Collaborative Laboratory Commissioning and Sustaining the Optimal Building

By E. Lon Brightbill, P.E Facility Dynamics

Overview

- Define Commissioning (Cx)
- Put the Cx process in the Context of a State of the Art Laboratory Facility (NIH B50)
- Present a software tool (ComIT) that facilitates a collaborative, paperless Cx process and provides an operator interface to building information
- Review laboratory functional performance testing
- Discuss Getting the Most From Cx and how to Sustain it
- Present a tool for continuous commissioning (PACRAT)

Commissioning

- The systematic process of ensuring that all building systems perform interactively according to the design intent and the Owner's operational needs.
 - All design/construct parties collaborate
 - Begins in planning stages and proceeds into occupancy

Commissioning Goals

- Ensure facilities are designed to meet Owner's needs
- Ensure facilities are installed properly
- Ensure intent and installation are fully documented
- Ensure Operators are fully trained
- Facilities are optimized for the actual occupancy

Lab Commissioning

- Focus on
 - -Safety
 - Reliability
 - Energy Efficiency
 - -Persistence
- Essential for today's complex Laboratories

NIH Building 50

- 300,000 sf
 - 190,000 sf of Research Space
- Seven Occupied Levels (each w/an Interstitial)
- Structural and Cell Biology Research
- Specialty Spaces
 - Vivarium w/BL 3
 - -BL 3 Labs
 - -NMR
 - -EM Suite

NIH Building 50

- Energy Features
 - Full VAV Fume Hoods & Tracking Zones
 - Desiccant Heat Wheel
 - Day Lighting
 - Variable Speed Drives
 - Commissioning
 - M&V

B50 Systems Overview

- Once Through Air Systems (450,000 cfm)
 - Headered Systems
 - VAV Flow Tracking Lab Zones/Fume Hoods
 - Desiccant Heat Wheel (General Exhaust)
- Electrical Network Feed with Generator Backup
- Campus Loop Connections for
 - Steam/Condensate
 - Chilled Water
 - Compressed Air
 - Domestic Water
- Lab Air, Vacuum, and Gasses
- Pure Water
- Clean Steam

B50 Process Overview

- Design Phase
 - Peer Review
 - Integrate and Coordinate Cx Requirements
- Construction Phase
 - Review Submittals
 - Collaboratively develop start up procedures
 - Fume Hood Mock Up
 - Contractor start up and documentation
 - Training
- Acceptance Phase
 - Functional Performance Testing
 - Start up checks with Sampling with maximum failure limit
 - Intra and Inter-system functional and performance tests
 - Crash Testing
 - Safety Certifications
 - Design Intent Training
- Occupancy Phase
 - Opposite Season Testing
 - Optimization
 - Capacity Assessment

B50 Cx Challenges

- Phased Occupancy and Tight Scheduling
- "Failure Matrix"
- Enhanced Fume Hood Testing Requirements
- Fluid Environment
- Special/Critical Occupancies

- Commissioning Information Tool
- Collaborative software tool that applies Information Technology to enhance the Cx process and provide O&M information to the operators electronically
- Provides a collaborative environment via the internet for all parties involved to generate and record commissioning procedures
- Provides an "Issue Management" or "Action List" tracking system that maintains threaded discussions, status of the issue, direct links to related documents, and associates the issue with building elements
- Provides near real time status of commissioning and "Action Items"
- Provides electronic equipment data that can be imported to the Maintenance/Asset Management Software
- Integrating all the diverse data through a common user friendly interface that can provide an effective tool for the facilities personnel

- Collaboration Via the Internet
 - Thick or Thin Client
 - Local Project Files with Synchronization
 - More Efficient
 - More Current
 - More Tightly Integrated
 - More "Agile"

Graphical Interface to Information

• Building Element Tree for Accessing

Lab Testing

- Intersystem Crash Testing
 - Standard Component Failures
 - Dropped single Network Feeders and All simultaneously
 - Tuned Failure Matrix
- Progressive Pressure Zone Testing and Set Up
- Rigorous Control System Shakeout
- Fume Hood Testing
 - Mock Up to Pre-qualify
 - Dynamic Response and Turbulence Intensity Assessment
- Heat Wheel Testing
 - Efficiency and Cross Contamination
- Capacity Assessment

Getting the Most From Lab Cx

- Budget Allocation
- Tight Coordinated Documents with Consequences
- Maintain Collaborative Environment
 - Information Management
 - Cooperative Spirit
- Involve Operators/Occupants early and extensively throughout
- Include extensive Cx scope
- "Hands on" senior experienced people directly involved
- Staying Current in a fluid environment
- Involve Safety Personnel
- Extensive integrated intersystem testing and optimization

Sustaining Cx

- Involving Operators throughout the Cx process
- Effective, thorough training with documentation that persists
- Effective Facility Documentation
 - Including Design Intent and Goals/Baselines
- Warranty Phase Cx
- Automated Continuous Cx
 - Control Systems
 - PACRAT

PACRAT

- Performance And Continuous Recommissioning Analysis Tool
- Modules
 - Automated Diagnostics
 - Monitoring and Verification
 - Performance (reality) Characterization
 - Data Visualization
- Comprehensive Tool for Using Building Operational Data to Improve Facility Operation and Planning

PACRAT Automated Diagnostics

AH Modules

- Failed or suspect sensors
- Mis-calibrated/coordinated sensors
- Out of sequence coils and associated wasted cost and false load
- Missed free cooling opportunities (lack of economizer) and associated wasted cost
- Fighting Coils and associated wasted cost and false load
- Leaking Valves and associated wasted cost and false load

- Struggling system capacities
- Unoccupied period operation
 (fan and ventilation) and associated
 wasted cost
- Unstable and Oscillating Control
- Deviation from setpoint
- Inadequate ventilation rates along with the associated parameter statistics
- Failed outputs or those with a poor performance characteristic
- OA sensor coordination with
 National Weather Stations

PACRAT Automated Diagnostics

- Hydronic System Module
 - Poor Temperature Difference
 - Reverse Bridge Flow
 - Unstable Control
 - Sensor Mis-calibration
 - Failed Output
 - Loop Overpressure
 - Struggling Valve or Pump control
 - Primary-Secondary MeterCoordination

- Chiller System Module
 - Poor Chiller Load Factor
 - Poor/Degrading Heat
 Exchange surfaces
 - Lack of ChillerOutput/Degrading Efficiency
 - StrugglingCapacity/Deviation fromSetpoint
 - Excessive Cycling
- Generic/Custom
 - Excess Consumption
 - "Fume Hood Police"
 - Deviation from setpoint or range
 - Unstable Control
 - Struggling Output

Automated Diagnostics

- Anomaly Information Reporting
 - Energy Cost Waste
 - Consequences
 - Applicable Details
 - Expert Help
 - Link to data graph

PACRAT M & V

- Establish "Commissioned" Baseline
 - Multi-dimensional (neural-like)
 - Use Day Types, Hour of Day, and other parameters such as OA
 Temp to index base patterns
- Micro vs Macro approach
 - Uses Detailed Data in addition to Monthly Totals

- Allows High resolu | Daily Utility Savings

- Establish "Convent
 - Directly document a
- Extensive Reporting
 - Automatically Recr
 - Calculate savings
 - Print Periodic Su
 - Graph Savings by

Summary

- Cx is Essential for Complex Laboratories
- To Get the Most from Cx Requires
 - Adequate Budget
 - Effective Collaboration integrating the efforts of many parties
 - Aggressive, Extensive testing by senior personnel actively participating
 - Extensive Operator/Occupant involvement
- Sustaining Cx
 - Effective Training with Persistent Documentation
 - Effective Facility Documentation
 - Warranty Phase Cx
 - Apply State of the Art Continuous Cx Tools